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Flow-induced vibrations of two side-by-side circular cylinders in a cross-#ow at di!erent
spacing ratios and mass-damping parameters are examined numerically. The two cylinders are
simply supported at both ends. Two di!erent cases are considered: one is the rigid case where
the structural sti!ness of the cylinder is assumed to be in"nite, and the other is the elastic case
where the cylinders undergo oscillations. In the latter case, the cylinders vibrate under the
action of the unsteady #ow-induced forces. Both cases are simulated at a Reynolds number of
200, which represents a typical laminar #ow. The present approach solves the unsteady #ow
"eld using a "nite element method with a deforming grid to accommodate the moving cylinders.
As for the cylinder motions, a two-degree-of-freedom structural dynamics model is invoked.
Fluid}structure interactions are resolved through iteration at the same time step. Numerical
calculations of the rigid case are validated against previously published results. Good agree-
ment is obtained between the present calculations and the data. The calculated visualization is
compared with its experimental counterpart and the #ow patterns are found to be consistent
with experimental observation. Finally, the #ow behind the vibrating cylinders is analysed with
an objective to understand the e!ect of cylinder motions on the near wake. The calculated #ow
patterns at di!erent spacing ratios are found to be consistent with previously documented
experimental observations.
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1. INTRODUCTION

ONE APPROACH TO TACKLE THE PROBLEM of #ow-induced vibrations of high-rise buildings in
close proximity is to develop an understanding of the interactions between the near-wake
#ow and the motions of the buildings. Complications of the wake #ow behind blu! bodies
have been extensively investigated (Zdravkovich 1997). Maull & Young (1973) found that
the shedding phenomenon was greatly a!ected by the complexity of the oncoming stream,
e.g., a blu! body in shear #ow would lead to vortex shedding occurring in spanwise cells.
Shedding was further complicated in the presence of neighbouring blu! bodies (Maull
1971). In this situation, depending on whether the blu! bodies were arranged in tandem or
inline, they were a!ected di!erently by the vortices shed from the neighbouring cylinders
and the nonuniformity of the oncoming #ow. If the bodies were elastic, the motions of the
bodies and their resulting e!ects on the surrounding #ow will add to the complexity of the
problem. A further complication is the very high Reynolds numbers usually encountered in
#ow-induced vibration of high-rise buildings. However, the basic physics of this problem
could be gleaned from investigating an idealized situation at a relatively low Reynolds
number. Therefore, as a "rst attempt, the problem could be modelled by multiple structures
in close proximity with each other freely vibrating in a cross-#ow in the laminar regime.
0889}9746/01/071009#22 $35.00/0 ( 2001 Academic Press
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This approximation is justi"ed because the physics of #ow-induced vibration is largely
governed by the vortex shedding behaviour and less by the physics of the surrounding #ow
(So et al. 2001). Understanding of the physics could be gained through experimental and/or
numerical simulation of the #ow around relatively simple arrangements of blu! bodies. The
case of two side-by-side cylinders vibrating as a result of #uid forcing is one of the most
basic and revealing problems in the general subject of vortex-induced #uid}structure
interaction.

Numerous experimental studies have been performed on the #ow around two side-by-
side cylinders set normal to the free stream (Spivack 1946; Bearman & Wadcock 1973;
Williamson 1985; Bearman 1995; Sumner et al. 1997, 1999; Paidoussis 1998; Zhou et al.
2001). Spivack (1946) investigated the predominant frequencies in the #ow "eld behind
a pair of cylinders using a hot wire technique over a Reynolds number (Re";

=
D/l) range

of 1)5]104}9)3]104, and discovered three distinct regimes of #ow with di!erent spacing
ratios ¹/D. Here, ;

=
is the free-stream velocity, D is the cylinder diameter, l is the #uid

kinematic viscosity and ¹ is the spacing between cylinder centres. Bearman & Wadcock
(1973) suggested that the repulsive forces acting between two circular cylinders were
originated from a rotation of the resultant force created by the presence of the neighbouring
cylinder. They also found that the asymmetry was due to a near-wake phenomenon and not
to the position of the boundary layer separation. On the other hand, Williamson (1985)
found the existence of harmonic vortex-shedding modes behind a pair of cylinders, and
observed that the shedding frequency on one side of the wake was a multiple of that on the
other. Sumner et al. (1997, 1999) studied the #uid}structure interaction phenomenon in
a water tunnel. They found that the reported bistable nature of the biased #ow was not
detected in the water tunnel experiments. Consequently, they questioned whether this was
a coincidence or whether there was a deeper underlying reason.

Compared to experimental studies, there have been relatively few numerical investiga-
tions of the #ow around two circular cylinders. Stansby (1981) used an essentially inviscid
discrete-vortex method to investigate two side-by-side cylinders in a cross-#ow and was
able to reproduce most of the gross wake features observed experimentally. Chang & Song
(1990) simulated the #ow around two side-by-side circular cylinders at Re"100 for
¹/D"1)7 and 3)0. They used a blending technique, which was made up of a "nite-element
method for the vicinity of the circular cylinders and a "nite-di!erence method for the rest of
the #ow "eld, to tackle the problem. Tezduyar et al. (1990) used a "nite-element formulation
with the streamline-upwind/Petrov}Galerkin (SUPG) method to investigate a similar
problem with ¹/D"1)5 and Re"100. On the other hand, Slaouti & Stansby (1992)
studied the #ow around two side-by-side circular cylinders using the random-vortex
method. Their calculations were carried out at Re"200 and several ¹/D ratios. Most of the
numerical investigations considered rigid cylinders only, where the cylinders are assumed to
have in"nite structural sti!ness. Consequently, the interactions between the #uid and the
elastic structures were not investigated.

The objective of the present study is to examine the #uid}structure interaction problem
given rise by two side-by-side cylinders placed in a cross-#ow. The numerical approach is
a "nite-element formulation using a deforming mesh to accommodate the arbitrary motions
of the two cylinders. The method is an extension of that developed for a single cylinder (So
et al. 2001). Thus, the interactions between the wake #ow and the cylinder responses can be
correctly modelled. This numerical approach has been validated against a freely vibrating
cylinder in a cross-#ow (So et al. 2001). Therefore, the present study needs to further verify
the numerical technique for multiple rigid cylinders in order to establish its credibility when
applied to perform design analysis of multiple structures in a cross-#ow. As a "rst attempt,
the emphasis is placed on calculating the case with Re"200 where the #ow is essentially
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laminar (Slaouti & Stansby 1992). The #ow patterns in the wake derived from the
calculations are compared, at least qualitatively, with the experimental #ow visualization
results obtained by Zhou et al. (2001) for three di!erent ¹/D ratios. These comparisons
attempt to "rmly establish the credibility of the present numerical method to tackle
#uid}structure interaction problems involving multiple structures. Interactions between
structures and #uid are then thoroughly studied by considering three mass-damping
parameters and three di!erent ¹/D together and their in#uence on cylinder vibrations and
spectral characteristics. The mass-damping parameter is de"ned as M

r
f
s
, where M

r
is the

ratio of the cylinder mass to the mass of the displaced #uid and f
s
is the dimensionless

structural damping coe$cient. The ratios, ¹/D"1)1, 1)8 and 3)0, are chosen because the
#ow regimes thus resulted are representative of three di!erent proximity e!ects observed in
two side-by-side cylinders (Zdravkovich 1985).

2. NUMERICAL METHODS AND DATA ANALYSIS

In the calculation of #uid}structure interaction problems, it is necessary to resolve the #ow
"eld, the structural dynamics and, most important of all, the #uid}structure interactions. If
this last behaviour is not resolved correctly, the calculated #ow-induced forces and hence
the structural dynamics will be in error. In the following, the solution of the #ow is described
"rst, then the structural dynamics model, the resolution of the #uid}structure interactions
and their feedback to the #ow and structural dynamics solutions, and "nally a discussion of
the data analysis technique used. These techniques have been discussed in detail in So et al.
(2001). However, for the sake of completeness, a brief description of these components is
also given here.

2.1. FLOW CALCULATION

A schematic view of the problem is shown in Figure 1. Two side-by-side elastic cylinders
with "xed support at both ends are placed in a cross-#ow with a free-stream velocity of;

=
.

The computational domain is a 25D]16D rectangular region, the upstream length is about
Figure 1. A schematic layout of two side-by-side cylinders in a cross-#ow.
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5D, while the downstream length is 20D, and the two cylinders are symmetric about the
centreline. The governing equations and their boundary conditions are given below for ease
of reference:

$ ' u"0, (1)

Lu

Lq
#u '$u"!$p#

1

Re
$2u. (2)

In these equations, x"(x, y) is the Cartesian position vector, u"(u, v) is the velocity "eld,
p is the pressure, q is the time. All these variables are dimensionless and they are de"ned with
respect to the dimensional variables (denoted here by the superscript *, except for time t) by
x"x*/D, u"u*/;

=
, p"(pH!p

=
)/o;2

=
and q"t;

=
/D. To complete the formulation, the

boundary conditions have to be speci"ed. They are

(i) at the upstream far "eld, domain top boundary and domain bottom boundary,

u"1, (3)

(ii) at the downstream far "eld,

Lu

Ln
"0, (4)

(iii) at the surface of the cylinders,

u ' n"u
#:
' n, (5)

where n denotes the normal direction to the boundary, u
#:

is the velocity of the cylinders and
n is the unit normal vector.

The Navier}Stokes equations are solved using a "nite-element method (FEM) and the
nonlinear coupling terms in the equations are treated separately, at di!erent fractional time
steps, by an operator-splitting time-stepping method. The method is suitable for both
steady and transient problems and can readily be extended to include extra equations
describing additional physical e!ects, such as the e!ects of cylinder motions on the #ow "eld
and vice versa (Bristeau et al. 1987).

The task in the present transient scheme is to "nd Mum`1, pm`1N at the (m#1) time step
from Mum, pmN at the mth time step. With the superscript m denoting the iteration number,
the steps involved in generating the solution Mum`1, pm`1N are as follows:

(a) "rst fractional step

um`d!um

d*t
!

a
Re

+2um`d#$pm`d"
b
Re

+2um!(um '$) um, (6)

$ ' um`d"0, (7)

(b) second fractional step

um`1~d!um`d
(1!2d)*t

!

b
Re

+2um`1~d#(um`1~d '$) um`1~d"
a
Re

+2 um`d!$pm`d, (8)

(c) third fractional step

um`1!um`1~d
d*t

!

a
Re

+2um`1#$pm`1"
b
Re

+2um`1~d!(um`1~d '$) um`1~d, (9)

$ ' um`1"0. (10)

In the above scheme, a, b3(0, 1) and a#b"1, d3(0, 1
3
).
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The subproblems at the "rst and third fractional steps are identical and are of the steady
Stokes problem type, namely,

a
0
u!

v
1

Re
+2u#d$p"F

1
, (11)

+ ' u"0, (12)

where F
1

is a body force, a
0
"1/Dt and v

1
"ad. On the other hand, the subproblem at the

second fractional step is of the type of a classical nonlinear di!usion}convection problem,
namely,

a
0
u!

v
2

Re
+2u#(1!2d)(u '$)u"F

2
, (13)

where F
2

is also a body force and v
2
"b(1!2d). A good choice for d (Bristeau et al. 1987)

was found to be (1!1/J2). The value of a and b are chosen in such a way that v
1
"v

2
is

satis"ed to yield identical Helmholtz operators at all fractional steps, which contribute
considerably to the overall e$ciency of the operator-splitting algorithm.

The steady quasi-Stokes problem (11) is solved by a preconditioned conjugate gradient
method. The nonlinear di!usion}convection problem (13) is reformulated as a least square
problem and solved by a preconditioned conjugate gradient method. This scheme reduces
the solution of the Navier}Stokes equations to solve a sequence of scalar Dirichlet problems
associated with the Helmholtz operator and the Neumann problems associated with the
Laplacian operator. The matrix associated with the Helmholtz operator is well conditioned
for all Re, since a

0
"1/*t.

The variational form of the above numerical system is discretized by the Galerkin
"nite-element method. Quadratic triangular elements are used throughout. Six-node quad-
rilateral elements are used for velocity and three-node linear elements are used for pressure.
Integration by parts is implemented for all the di!usion terms.

The program development was carried out in a high level language Fasttalk, which is
a unique feature of Fast-o, a general-purpose "nite-element CFD package developed by
CSIRO (Stokes 1994). Fast-o contains neither physical assumptions nor mathematical
algorithms; it purely supports Fasttalk language, assemblies and solves the "nite-element
equations programmed by Fasttalk. A comparison between calculations and measurements
of an elastic cylinder in a cross-#ow up to Re+5000 has been carried out and good
agreement was obtained (So et al. 2001).

Since the boundary layer is expected to be thin near the cylinder, a "ne mesh is
concentrated near the cylinder surface. The number of panels is 256, the number of nodes is
about 63 589, and the number of elements is numerically determined to be about 31 589,
which is adequate to resolve the velocity and the boundary layers. These numbers are
determined by using di!erent meshes, from coarse to progressively "ner meshes, until the
drag coe$cient is mesh-convergent to within a prescribed tolerance of about 0)5%.

2.2. CYLINDER DYNAMICS

The circular cylinders are assumed to be modelled by a spring}damper}mass system, which
is representative of the location of maximum amplitude of vibration at the mid-section of
a long cylindrical structure mounted with "xed ends. Thus, the cylinder motions can be
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accounted for by solving a two-degree-of-freedom dynamic equation for each cylinder,

ZG#
4nf

s
;

r

Z0 #A
2n
;

r
B
2
Z"

C
f

2M
r

, (14)

where Z"(X/D)i#(>/D)j , X and > denote the instantaneous displacements of the
cylinders in the x and y directions, respectively, M

r
"M/(oD2) is the mass ratio, o is the air

density and M is the cylinder mass per unit length. The force coe$cient is de"ned as
C

f
"2F/o;2

=
D, while the reduced velocity is given by;

r
";

=
/f H
n
D, where f H

n
is the natural

frequency of the stationary cylinder. The two-dimensional force vector, F"MF
D
, F

L
N,

consists of the unsteady drag and lift force components. Their corresponding coe$cient is
de"ned as C

D
"2F

D
/o;2

=
D and C

L
"2F

L
/o;2

=
D, respectively. The solution yields the

vibration displacement and the velocity of the cylinder as they respond to the surrounding
#ow "eld and the motion of the shed vortices. The incompressible #ow calculation is
coupled with the cylinder responses through the boundary conditions and C

f
, thus allowing

#uid}structure interactions to be adequately resolved at each time step if the #ow calcu-
lation and equation (14) are solved iteratively. In the present formulation, this iteration is
carried out at each time step until the induced forces and the cylinder motions give rise to
convergent results.

2.3. FLUID}STRUCTURE COUPLING

The major di$culty associated with the numerical simulation of viscous #ow around the
oscillating cylinders is to describe boundary conditions at the moving boundary
within a "nite-element grid system. In the present problem, the two side-by-side elastic
cylinders are free to vibrate within the #ow domain, and the reference frame cannot be
attached to the cylinder. Therefore, a deforming computational mesh is required to accom-
modate the arbitrary motion of the two cylinders. The cylinder surfaces are adjusted
according to the motion of the cylinders by means of nodal displacement. At each time step
the displacements of the cylinders are calculated, represented by the vector function
Z(X/D,>/D). In order to distribute the mesh deformation as uniformly as possible, i.e., to
minimize local mesh deformation and prevent potential entanglements, a Laplacian equa-
tion of displacement is solved throughout the computational domain with the cylinder
displacements as the boundary condition. The Laplacian equation and boundary condition
can be written as

+2d"0 (15)

with d"0 at the outside boundary and d
i
"Z

i
at each cylinder wall. The entire computa-

tional mesh is adjusted by a Laplacian interpolation, which is designed to map a mesh
smoothly onto a reasonably similar shape, speci"ed by the displacements of the elastic
cylinders. As a result, the mesh nodal coordinates have changed, but the connectivity of the
mesh remains constant, and the #ow "eld solution is projected from the old mesh onto the
new one.

During the calculation, the reference frame is "xed in the far "eld. Therefore, the cylinders
are free to vibrate within the calculation domain. At each time step, the #uid #ow is solved
using the "nite-element method. The force on each cylinder is calculated by integrating the
pressure and the wall shear stress on the surface. This is then taken as the force input for
equation (14) and the response of each cylinder is calculated by solving equation (14) using
the Runge}Kutta method. Each cylinder is moved according to the displacement, and the
mesh is remapped according to this motion. Then the #ow "eld is solved again using the
cylinder velocity as the boundary condition. Finally, the whole process is repeated in an
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iterative way so that the interactions between the #uid and the cylinders are accounted for
properly.

2.4. DATA ANALYSIS

The calculated and measured time series are analysed using the auto-regressive moving
average (ARMA) technique. Details of the ARMA technique can be found in Mignolet
& Red-Horse (1994). The use of this technique to analyse time series derived from #ow-
induced vibration problems has been attempted (Jadic et al. 1998; Zhou et al. 1999; So et al.
2001) before and the results have been compared with those obtained from the Fast Fourier
transform method. The technique was found to be quite suitable for #ow-induced vibration
problems (Jadic et al. 1998).

3. COMPARISON WITH PUBLISHED DATA FOR TWO RIGID CYLINDERS

The validity of the proposed numerical method for multiple structures is examined by
making a thorough comparison between the present calculations and previously reported
numerical data and experimental #ow visualization results. The numerical results of Slaouti
& Stansby (1992) are selected for the comparison together with the visualization experi-
ments of Zhou et al. (2001). These two comparisons are reported separately below.

3.1. COMPARISON WITH PREVIOUSLY REPORTED NUMERICAL DATA

The calculations attempted are two rigid cylinders placed in a cross-#ow with Re"200 and
¹/D"1)1, 1)8 and 3)0. These three cases have also been reported earlier by Slaouti
& Stansby (1992). Furthermore, the #ow visualization experiments of Zhou et al. (2001)
were carried out at Re"150 and ¹/D"1)13, 1)7 and 3)0. Thus, the calculations of these
three cases can be compared with the two sets of reported data. The present calculations
and the published results are tabulated in Table 1. From this point on, the subscripts 1 and
2 are used to denote cylinder 1 and 2, respectively, as indicated in Figure 1. In order to
deduce the root mean square values from the reported results, the amplitudes of the

#uctuating forces are divided by J2.
TABLE 1
Comparison of the present calculations with other two cylinder results at Re"200

¹/D"1)1 ¹/D"1)8 ¹/D"3)0

Present
calculation

Slaouti &
Stansby (1992)

Present
calculation

Slaouti &
Stansby (1992)

Present
calculation

Slaouti &
Stansby (1992)

CM
D1

1)806 1)85 1)185 1)10 1)03 1)23
CM

D2
1)806 1)85 1)123 1)30 1)12 1)22

C@
D1

0)2295 0)212 0)066 0)25 0)066 0)11
C@

D2
0)2292 0)283 0)086 0)25 0)086 0)07

CM
L1

1)172 0)89 0)328 0)35 0)116 0)14
CM

L2
!1)173 !0)90 !0)299 !0)13 !0)120 0)00

C@
L1

0)566 0)424 0)103 0)50 0)133 0)71
C@

L2
0)567 0)389 0)091 0)57 0)133 0)64

f
s1

0)1101 0)11 f (1)
s1

0)162 0)16 0)19 0)215
f (2)
s1

0)223 0)26
f
s2

0)1101 0)11 f (1)
s2

0)162 0)16 0)19 0)215
f (2)
s2

0)223 0)26



Figure 2. Two rigid cylinders at ¹/D"1)1 and Re"200; (a) C
D

time series; (b) C
L

time series;
(c) enlarged view of C

L
for a short period of time, where &&point a'' indicating the time at the lift peak of

cylinder 1, &&point b'' being the time at the turning point before the additional peak, and &&point c''
being the time at the lift valley of cylinder 1; and (d) power spectra of C

L
and C

D
. **, Cylinder 1;

} ) } ) } , Cylinder 2.
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At ¹/D"1)1, the calculated mean drag coe$cient, CM
D
, for both cylinders is the same.

This trend is identical with that given by Slaouti & Stansby (1992) and the di!erence
between the CM

D
results is only 2.4%. The values of the mean lift coe$cient, CM

L
, of the two

cylinders are equal but antithetical. This trend, too, bears a striking resemblance to that
obtained by Slaouti & Stansby (1992), thus indicating a repelling force between the two
cylinders. The di!erence in CM

L
between the present calculations and those of Slaouti

& Stansby (1992) is about 23%. As shown in Figure 2(a, b), the drag and lift forces oscillate
in-phase and at the same frequency. This is evident from the calculated shedding frequencies
for the two cylinders, which are f

s1
"f

s2
"0)11 for the present calculations as well as for

those reported by Slaouti & Stansby (1992). The power spectra of C
L

and C
D

for both
cylinders are shown in Figure 3(d). Here, E is the ARMA power spectral density, which is
de"ned as the square norm of the system function scaled by the sampling interval and



Figure 3. Vortex formation and streamline patterns for two rigid cylinders at ¹/D"1)1.
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white-noise variance (Marple 1987). At this Re and ¹/D, both cylinders have the same
shedding frequencies and harmonics. The present calculations give the same root mean
square #uctuating drag coe$cient, C @

D
, for the two cylinders. The same is also true for the

root-mean-square #uctuating lift coe$cient, C @
L
. On the contrary, there is a di!erence

between the two cylinders in the calculated C @
D

and C @
L
in the results reported by Slaouti and

Stansby (1992). Generally speaking, at this ¹/D, it is clear that the present calculations and
the results reported earlier (Slaouti & Stansby 1992) are similar and fairly consistent.

In Figure 2(a, b), the lift and drag time series are approximately periodic. However, at
each period, besides the positive peak, there exists a small additional peak, as shown in the
enlarged view in Figure 2(c). This additional peak is not the noise in the signal, rather, it is
the interaction of the gap #ow with the vortex shedding. In order to observe the develop-
ment of the vortex formation, three &&time points'' are marked in Figure 2(c). These points
are denoted as a, b and c, where &&point a'' indicates the time at the lift peak of cylinder 1,



Figure 4. Two rigid cylinders at ¹/D"1)8 and Re"200; (a) C
L

and C
D

time series, and (b) power
spectra of C

L
and C

D
. **, Cylinder 1; } } } , Cylinder 2.
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&&point b'' is the time at the turning point before the additional peak and &&point c'' is the time
at the lift valley of cylinder 1. The vortex formation and streamlines for ¹/D"1)1 at the
three &&time points''marked in Figure 2(c) are shown in Figure 3. It can be seen that the gap
#ow is very weak and de#ects periodically around the bases of the upper and lower
cylinders. This is consistent with the downstream vortex shedding shown in Figure 3(a, c),
which are half a period apart. At &&point a'', a larger vortex has shed from cylinder 2 (lower),
a smaller vortex is developing from the outer shear layer of cylinder 1 (upper), and the
de#ection of the gap #ow is toward cylinder 1, i.e., the cylinder where the vortex shedding is
taking place. Even though the gap #ow is very weak, the inner boundary layers are still
developing between the two cylinders. This can be inferred from the vorticity distribution
plot shown in Figure 3(a) where a small vortex exists behind cylinder 2. At &&point b'', the lift
time series of cylinder 1 is at its turning point, i.e., just before the additional peak. The
previous smaller vortex developed from the outer shear layer of cylinder 1 is growing and
trying to merge with the small vortex developed from the gap #ow. The additional peak is
caused by this merging of the bigger vortex from the outer shear layer of cylinder 1 and the
small vortex developed from the gap #ow. At &&point c'', the vortex developed from the outer
shear layer of cylinder 1 has shed, a new vortex is developing from the outer shear layer of
cylinder 2, the gap #ow changes its direction from upward to downward, and the lift time
series is at its valley.

An inspection of Figure 4(a) shows a strong irregularity in the time series of lift and drag
at ¹/D"1)8. The calculation time is quite long (q"1200), but it seems that a stationary
state has not been reached. Therefore, it is possible that there is no stationary state for this
case. The irregularity might not be due to transition behaviour, but due to vortex interac-
tions. The power spectra of C

L
and C

D
for both cylinders at ¹/D"1)8 are shown in Figure

4(b). There are two dominant peaks for C
L
, re#ecting the two vortex shedding frequencies.

The two shedding frequencies are identi"ed as the "rst and second shedding frequencies,
denoted here by f (1)

s
and f (2)

s
, respectively. The present calculation gives f (1)

s
"0)162,

essentially the same as that reported by Slaouti & Stansby (1992); but the di!erence in
f (2)
s

between the two calculations is approximately 14%. The di!erence in CM
D

between the
two calculations is less than 13%, but the C @

D
given by Slaouti & Stansby (1992) is much



Figure 5. Two rigid cylinders at ¹/D"3)0 and Re"200; (a) C
L

and C
D

time series, and (b) power
spectra of C

L
and C

D
. **, Cylinder 1; } } } , Cylinder 2.

SIDE-BY-SIDE CYLINDERS 1019
higher than that of the present calculation. The values of the mean lift coe$cient, CM
L
, of the

two cylinders are antithetical, indicating a repelling force between the two cylinders. This
trend, too, bears a striking resemblance to that obtained by Slaouti & Stansby (1992). It
should be pointed out that the magnitude of CM

L
for cylinders 1 and 2 is essentially the same

for the ¹/D"3)0 and 1)1 cases. However, there is a substantial di!erence between the
magnitude of CM

L
for cylinders 1 and 2 for ¹/D"1)8. The essentially equal repelling force

calculated for the cases ¹/D"3)0 and 1)1 follows from the rather symmetric #ow behaviour
in the wakes of the two cylinders and the relatively stationary nature of the wakes. On the
other hand, the unequal repelling force calculated in the ¹/D"1)8 case could be attributed
to the biased #ow pattern in the gap, which leads to a bistable behaviour of the gap #ow,
and the fact that the wake #ow is not stationary even at q"1200. This di!erence in
behaviour of the gap #ow is even more evident when a comparison of the present
calculations of the wake #ow is made with visualization results in Section 3.2.

At ¹/D"3)0, the lift and drag time series are again quite periodic, but they require
a much longer time than expected to reach true stationary state, as shown in Figure 5(a). In
the time period q"20}160, the C

L
signal appears to be almost stationary. However, after

that period, the amplitude of C
L

starts to decrease drastically and then increases eventually
to reach the true stationary state after q"300. The calculated mean drag coe$cient, CM

D
, for

both cylinders is the same (Table 1). This trend is identical with that given by Slaouti
& Stansby (1992), but their C @

D
is much higher than the present calculation. The calculated

CM
L

of the two cylinders are almost equal but antithetical, indicating a repelling force
between the two cylinders. In the reported result (Slaouti & Stansby 1992), the mean lift of
cylinder 2 is zero, and C @

L
of both cylinders are much higher than those of the present

calculation. The most likely explanation for this discrepancy is that their calculation time
was not long enough, since they did not report the amplitude change between q"160}200
and only showed the C

L
and C

D
time series in the period q"0}120. An inspection of Figure

5(b) shows identical shedding frequencies for both cylinders (see also Table 1), thus
indicating two identical vortex streets from the cylinders. The shedding frequency of C

D
is

also exactly double that of C
L
. In spite of these similarities, the present calculated shedding

frequency is less than that reported.
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From this comparison, it is evident that the present numerical formulation is capable of
reproducing the three di!erent #ow regimes that characterized the near wake of two
side-by-side cylinders in a uniform stream corresponding to three di!erent ¹/D ratios. The
present calculations are also in fair agreement with the results reported earlier (Slaouti
& Stansby 1992). However, the present calculations reveal that the #ow takes a much longer
time to reach stationary state. This could be the reason for the observed discrepancy
between the present statistical results and those of Slaouti & Stansby (1992). The resolution
is "ne enough to reveal the second vortex shedding in the case ¹/D"1)1. This too was not
reported previously.

3.2. COMPARISON OF WAKE FLOW WITH EXPERIMENTAL VISUALIZATION

Having compared the statistics of the present numerical simulation of two side-by-side rigid
cylinders in a uniform cross-#ow with the results of Slaouti & Stansby (1992), the next
comparison is made with the #ow visualization results of Zhou et al. (2001). The visualiz-
ation experiments were carried out for a number of ¹/D ratios and several Re. The closest
Re available for comparison is 150 with ¹/D"1)13, 1)7 and 3)0, compared to the present
calculations of Re"200 and ¹/D"1)1, 1)8 and 3)0. This comparison is viable because the
wake #ow is laminar at both Re. The experiments were carried out in a small water tunnel
with acrylic cylinders of 6 mm diameter and the blockage was about 13.3% for all three ¹/D
ratios. The cylinders were not exactly rigid; however, the displacements were so small that
their e!ects on the wake #ow were insigni"cant. Details of the experiment were given in
Zhou et al. (2001); therefore, they will not be repeated here. It should be pointed out that
#ow visualization investigations were carried out over the domain 04x/D410. Therefore,
the calculations shown in the following comparison are also limited to this x/D range. Since
the exposure time is di!erent from the time step used in the simulation, the calculations over
approximately the same time period are averaged before comparing.

The vortex comparison between numerical simulation and experimental visualization is
shown in Figure 6. Generally, the calculated #ow pattern looks similar to the experimental
visualization. At ¹/D"1)13, the calculated vortex looks very much like the experimental
visualization, and the two cylinders behave in a similar fashion to a single blu! body, i.e.,
a single vortex street is observed in the combined wake of the two cylinders. At intermediate
¹/D (1)7 for the experiment and 1)8 for the calculation), the biased #ow patterns are found in
both numerical simulation and experimental visualization. In this comparison, the #ow
de#ects downward and the biased #ow of the numerical simulation is much more visible
than that of the experimental visualization. In the actual case, the biased #ow for both
numerical and experimental studies is found to be bistable. At ¹/D"3)0, the #ow "eld
regains its symmetry, and the side-by-side rigid cylinders behave more as independent,
isolated blu! bodies. In the current numerical simulation, the in-phase vortex shedding is
the predominant #uid behaviour. In the experimental visualization, both in-phase and
anti-phase vortex formations were observed, although the anti-phase was noted for the
most part of the experimental visualization. The pictures in Figure 6 show the in-phase
vortex shedding for both the numerical simulation and experimental visualization at
¹/D"3)0. Generally, the calculated #ow pattern is quite consistent with the experimental
visualization, indicating a correct simulation of the #ow "eld behind the two side-by-side
rigid cylinders.

4. RESULTS ON TWO ELASTIC CYLINDERS

Having veri"ed the suitability of the numerical approach for multiple rigid cylinders in
a cross-#ow, the next step is to use it to study the case of two side-by-side elastic cylinders.



Figure 6. Visualization comparisons with experiment: (top) calculation and experiment at
¹/D"1)13; (middle) calculation at ¹/D"1)8 and experiment at ¹/D"1)7; (c) calculation and

experiment at ¹/D"3)0.
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In the present numerical simulation, the two cylinders are free to vibrate in the #ow domain.
A moving mesh is implemented to accommodate the arbitrary motion of the two cylinders.
However, the two cylinders are not permitted to touch each other, and this limits the
selection of M

r
f
s
. In the present calculations, M

r
f
s
is selected to be 0)3, 1)0 and 2)0, and the

corresponding mass ratios are M
r
"10, 33 and 66, respectively. For all calculations,

Re"200 and ;
r
"5)0 are speci"ed and the ¹/D ratios are chosen to be identical to those

for the rigid case discussed above. This choice of parameters is to allow the e!ects of #ow-
induced vibration on the response of the elastic cylinders to be assessed. Therefore, in the
following, whenever necessary, the results of the rigid case are also shown for comparison.

At this stage, experimental measurements are not available for comparison. The experi-
ments of Zhou et al. (2001) were carried out at a much higher Re. It is the intent of the



Figure 7. The C
L
and >/D time series for di!erent M

r
at ¹/D"3)0; (a) C

L
comparison for M

r
"10

and 33, (b) C
L
comparison for M

r
"66 and the rigid case, (c)>/D comparison for M

r
"10 and 33, and

(d) >/D comparison for m*" 66. **, Cylinder 1; } } } , Cylinder 2.
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present study to "rst establish "rmly the credibility of the calculation method before
extending it to higher Re. Therefore, the comparison with the experiments of Zhou et al.
(2001) will be the subject of another paper. In the following, the discussion on ¹/D"3)0 is
given "rst, this is followed by the case of ¹/D"1)8 and ends with the case of ¹/D"1)1.

4.1. SPACING RATIO OF ¹/D"3)0

The C
L
and transverse displacement (>/D) time series of the two cylinders at ¹/D"3)0 with

di!erent M
r
are shown in Figure 7. Generally, the amplitude of C

L
and >/D increases with

decreasing M
r
(or M

r
f
s
). When the two cylinders are rigid, the oscillations of C

L
for both

cylinders are in-phase, indicating an in-phase vortex shedding. The level of C
L

for cylinder
2 is lower than that of cylinder 1 and is consistent with the mean lift coe$cients shown in
Table 1. As the cylinders become elastic and M

r
"66, the amplitude of C

L
is apparently

larger than that of the rigid case, but the vibrations of the two cylinders are still in-phase.
The level of C

L
is still lower for cylinder 2. When the mass ratio is further reduced to



Figure 8. The power spectral density of C
L

and >/D at ¹/D"3)0 with di!erent M
r
; (a) C

L
,

(b) >/D. **, Cylinder 1; } } } , Cylinder 2.
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M
r
"33 and 10, the vibrations of the two cylinders become anti-phase, and the amplitudes

of C
L

and >/D become much larger. At M
r
"10, the peak-to-peak value of >/D is

approximately 1 and is quite large. In other words, the deforming computational mesh
proves to be viable even for this relatively large deformation. The e!ect of #ow-induced
vibration on the cylinder dynamics is clearly visible; the nature of the cylinder vibration has
been changed from that of in-phase to that of anti-phase, and the cylinders have been able to
extract more energy from the #owing #uid to increase the vibration amplitudes.

The power spectra of C
L

with di!erent M
r
are shown in Figure 8(a). For rigid and elastic

cylinders, the vortex shedding frequency f
s
is nearly identical. In the rigid case, there is only

one peak in the spectral density of C
L
, indicating a linear vortex shedding. When the

cylinders are elastic, due to the strong interaction between #uid and structure, higher
harmonics appear, indicating a nonlinear vortex shedding, and the nonlinearity increases
with decreasing M

r
. On the other hand, the power spectra of >/D show an identical

vibration frequency for all M
r
calculated [Figure 8(b)]. This is indicative of the occurrence

of resonance at ;
r
"5)0. Comparing Figure 8(a, b), it is apparent that resonance occurs

with f
s
of the rigid/elastic cylinder equaling f

n
, the natural frequency of the #uid}cylinder

system of the individual cylinder. At this ¹/D"3)0, the cylinder behaves as if the neigh-
bouring cylinder has no in#uence. As a result, f

s
of the two cylinders are identical and so is

f
n

of the #uid}cylinder system of the individual cylinder.
Vortex formation and streamline patterns behind the two cylinders for the ¹/D"3)0

case are shown in Figure 9. Here, the designation &&attractive'' indicates the case where the
two cylinders with M

r
"10 are at their maximum attractive displacements, and &&repulsive''

denotes the case where the two cylinders with M
r
"10 are at their maximum repulsive

displacements. In the rigid case, vortex shedding is in-phase. This leads to the formation of
a single, binary vortex street in the combined wake of the two cylinders. The calculated
phenomenon bears a striking resemblance to the case reported by Williamson (1985). When
the two cylinders are elastic and M

r
"10, the two cylinders vibrate vigorously and vortex

shedding is anti-phase. This behaviour is observed irrespective of whether the cylinders are
&&attractive'' or &&repulsive''. The behaviour gives rise to two parallel vortex streets in the
wake and the patterns for the two cases are quite similar. Again, this phenomenon is
consistent with that reported by Williamson (1985). Therefore, further evidence in support
of the present numerical technique is obtained.
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4.2. SPACING RATIO OF ¹/D"1)8

At this ¹/D, a biased #ow pattern for the two cylinders is found. This biased #ow is bistable.
The cylinder towards which the #ow is biased has a narrower near-wake and a higher f

s
,

while the other cylinder has a wider near-wake and a lower f
s
.

The vortex formation and streamlines of the two cylinders at ¹/D"1)8 are shown in
Figure 10, where Figure 10(a) displays the rigid case, and Figure 10(b, c) those of the elastic
cases at M

r
"10. According to Williamson (1985), for Re4200, there are two types of basic

behaviour in the vortex dynamics of the combined wake for the biased #ow pattern. In the
"rst case, vortices formed alongside the biased gap #ow are squeezed and amalgamated into
Figure 9. Vortex formation and streamline patterns for two cylinders at ¹/D"3)0.
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the dominant vortices on the outside of the two-cylinder con"guration, the side to which the
#ow is biased. This amalgamation process eventually produces a single vortex street in the
combined wake. In the present calculation, Figure 10(a, b) exactly show the simulation of
this phenomenon. In the second case of Williamson (1985), the combined wake of the two
cylinders is marked by pairs of vortices downstream of the cylinder with the narrow
near-wake region, and single larger vortices downstream of the cylinder with the wider
near-wake region, on the opposite side. In this case, the gap vortices are amalgamated into
the side of the wake where the pairs form. Again, the present result bears a striking
resemblance to this phenomenon, as shown in Figure 10(c). Actually, in the present
simulation, the two types of basic behaviour dominate alternatively the vortex formation
for the case of ¹/D"1)8.
Figure 10. Vortex formation and streamline patterns for two cylinders at ¹/D"1)8.



Figure 11. The C
L

and >/D time series for di!erent M
r

at ¹/D"1)8: (a) C
L

comparison for
M

r
"10 and 33; (b) C

L
comparison for M

r
"66 and the rigid case; (c) >/D comparison for M

r
"10;

(d) >/D comparison for M
r
"33 and 66. **, Cylinder 1; } } } , Cylinder 2.

Figure 12. The power spectra of C
L

and >/D at ¹/D"1)8 with di!erent M
r
: (a) C

L
; (b) >/D.

**, Cylinder 1; } } } , Cylinder 2.
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Figure 13. Two cylinders at ¹/D"1)1 and Re" 200; (a) C
L

time series comparison between rigid
and elastic (M

r
"66) cylinders, } } } }, M

r
"66;**, rigid. (b)>/D time series for M

r
"66, (c) power

spectra of C
L
, and (d) power spectra of >/D. **, Cylinder 1; } } } , Cylinder 2.
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The C
L
and>/D time series of the two cylinders at ¹/D"1)8 with di!erent M

r
are shown

in Figure 11. Due to the strong interaction of the vortices in the near-wake and the irregular
alternation of the types of vortex formation, the C

L
and >/D time series are also irregular

and there is no observable stationary state in either time series, even for large time. An
inspection of Figure 11(a, b) shows a strong dependence of the C

L
amplitude on M

r
, and its

increase with decreasing M
r
. Both in-phase and anti-phase vortex shedding exist in the time

series for the rigid and the elastic cases, thus indicating a pattern of alternate vortex
formation. The >/D time series for di!erent M

r
are shown in Figure 11(c, d). Just as in the

¹/D"3)0 case, the >/D amplitude of cylinder 1 is larger than that of cylinder 2 and it
increases signi"cantly with decreasing M

r
.

The power spectra of C
L

for the same ¹/D are shown in Figure 12(a) while those for >/D
are given in Figure 12(b). At this ¹/D, two dominant peaks are detected in E

L
, re#ecting two

shedding frequencies, f (1)
s

and f (2)
s

, just as in the rigid cylinder case discussed earlier. The
values of f (1)

s
and f (2)

s
determined for cylinder 2 are very close to those given in Table 1 for

the rigid case. There is a shift for cylinder 1 in the M
r
"66 case, but no shift for other M

r
.
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This shifting is also observed in experimental measurement for two rigid cylinders. As
a result, the measured shedding frequencies are scattered, and Sumner et al. (1999) suggest
that the scatter of the data simply shows that there is some variation in the magnitude of the
two frequencies at a given ¹/D. For the rigid case and the elastic case where M

r
"66, no

higher harmonics in the power spectra are detected, indicating linear vortex shedding. As
M

r
decreases to 10, higher harmonics are present and they are very strong, indicating

nonlinear vortex shedding. On the other hand, the power spectra of >/D show that there is
only one dominant f

s
[Figure 12(b)], except for M

r
"10 where a second peak is also

noticed. This second peak occurs at a frequency that is &2f
s
and could be due to cross talk

between the lift and drag direction.

4.3. SPACING RATIO OF ¹/D"1)1

At this ¹/D, the two cylinders are very close. The requirement that the cylinders should not
touch each other limits the investigation to large M

r
. Consequently, only the case of

M
r
"66 is selected for investigation. When the cylinders are elastic, the amplitude of

C
L

increases slightly for both cylinders, as shown in Figure 13(a). An additional peak
appears in the C

L
time series. This is due to the interaction of the gap #ow with the near

wake, as shown in Figure 3 for the rigid case. At;
r
"5)0, this additional peak has a strong

in#uence on the vibration of the cylinders, as shown in Figure 13(b). Due to the strong
interaction between the vortices developed from the outer shear layers of the cylinders and
the gap #ow, higher harmonics in the C

L
power spectra of cylinder 1 are very prominent

[Figure 13(c)], indicating nonlinear vortex shedding at ¹/D"1)1. Compared to the rigid
case, the vortex shedding frequency of the elastic cylinders shifts slightly, as shown in
Figure 13(a, c). The power spectra of >/D show that two frequencies dominate the vibration
of the cylinders, one is f

s
while the other is &2f

s
. Again, this shows a strong cross talk

between the lift and the drag direction.

5. CONCLUSIONS

A numerical study of the #ow-induced vibration of two side-by-side cylinders in a cross-
#ow has been carried out at Re"200. An operator-splitting time-stepping "nite-element
method is used to solve for the #ow "eld, while a two degree-of-freedom structural dynamics
model is assumed for the cylinder motion. The cylinders do not move in the rigid case;
however, they vibrate freely in the elastic case. Therefore, a deforming computational mesh
is used to accommodate the arbitrary motion of the two cylinders. Each cylinder is allowed
to move according to its displacement and the mesh is remapped as a result. After each such
remapping, the #ow "eld is solved again using the cylinder velocity as the boundary
condition. The present calculations limit ¹/D and M

r
to those values that would not allow

the cylinders to touch each other, even under the most severe vibration.
In order to establish the credibility of the present numerical method, a thorough

comparison of the rigid case is made with previously reported lift and drag calculations and
their associated frequencies, and #ow visualization results. Two sets of results are selected:
one is a numerical investigation reported by Slaouti & Stansby (1992), another is the #ow
visualization experiment of Zhou et al. (2001). The comparisons are made with three
di!erent¹/D ratios, selected to match those reported by Slaouti & Stansby (1992) and Zhou
et al. (2001) because the resultant behaviour represents three di!erent #ow regimes. Good
agreement is obtained between the present and previously reported numerical simulation
and experimental visualization. Thus established, the calculations were extended to the
vibrating case and the range of ¹/D selected matches those for the rigid case. The vortex
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formation and #ow patterns deduced from the calculated results are quite consistent with
published data (Williamson 1985). There are no available data to verify the calculations
directly. In spite of this, the following conclusions can be drawn from the calculations of the
freely vibrating case.

(i) The current numerical technique could reproduce the same phenomena observed in the
experiments reported by Williamson (1985), such as the #ow patterns at di!erent ¹/D.
This lends further credence to the mechanism of vortex formation reported in the rigid
case.

(ii) The proposed moving mesh technique can be used e!ectively to resolve the #ow-
induced vibration behaviour in the case of two side-by-side cylinders. This means that
the technique could be extended to similar problems with multiple structures.

(iii) At this low Reynolds number, for the rigid cylinder case, vortex shedding is linear; but
for the elastic cylinder cases considered, vortex shedding is becoming nonlinear and
higher harmonics appear due to #uid}structure interactions. This behaviour is depen-
dent on M

r
; the vortex shedding behaviour is still linear for large M

r
, but is progress-

ively becoming more nonlinear as M
r
decreases.
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